skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Tovar, Kevin A"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We report the observation and analysis of a new electronic transition in gas-phase vanadium hydride (VH), identified as the C′5Δ–X5Δ (1,0) band with an origin at 14,015 cm− 1 (714 nm). The spectrum was recorded by laser excitation spectroscopy, with laser-induced fluorescence detected to the X5Δ (v =1) level. Dispersed fluorescence measurements enabled a detailed characterization of the vibrationally excited ground state, yielding a vibrational interval of ΔG1/2 = 1606.6(2) cm− 1 . Despite the presence of significant local perturbations—particularly in the Ω =0 and 1 spin components of the C′5Δ state—a full rotational analysis of the spectrum using a Hund’s case (a) Hamiltonian was achieved. Spectroscopic constants including rotational, spin–orbit, spin–rotation, and Λ-doubling parameters are reported for both the new C′5Δ state and the X5Δ (v = 1) level. Additionally, we observed a small local perturbation in the X5Δ₁ (v =1) level near J =9, attributed to homogeneous spin–orbit and heterogeneous L-uncoupling interactions with the previously analyzed A5Π (v =0) state. An X5Δ ~ A5Π coupled Hamiltonian was used to model this perturbation and yielded interaction parameters roughly consistent with semi-empirical estimates. This work represents only the second analyzed spectroscopic transition of gas-phase VH. 
    more » « less
    Free, publicly-accessible full text available September 10, 2026